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ABSTRACT
Spectral clustering views the similarity matrix as a weighted graph, and partitions the data by minimizing a
graph-cut loss. Since it minimizes the across-cluster similarity, there is no need to model the distribution
within each cluster. As a result, one reduces the chance of model misspecification, which is often a risk
in mixture model-based clustering. Nevertheless, compared to the latter, spectral clustering has no direct
ways of quantifying the clustering uncertainty (such as the assignment probability), or allowing easy model
extensions for complicated data applications. To fill this gap, we propose the Bayesian forest model as a
generative graphical model for spectral clustering. This is motivated by our discovery that the posterior
connecting matrix in a forest model has almost the same leading eigenvectors, as the ones used by
normalized spectral clustering. To induce a distribution for the forest, we develop a “forest process”as a graph
extension to the urn process, while we carefully characterize the differences in the partition probability. We
derive a simple Markov chain Monte Carlo algorithm for posterior estimation, and demonstrate superior
performance compared to existing algorithms. We illustrate several model-based extensions useful for data
applications, including high-dimensional and multi-view clustering for images. Supplementary materials for
this article are available online.
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1. Introduction

Clustering aims to partition data y1, . . . , yn into disjoint groups.
There is a large literature ranging from various algorithms
such as K-means and DBSCAN (MacQueen 1967; Ester et al.
1996; Frey and Dueck 2007) to mixture model-based approaches
(reviewed by Fraley and Raftery 2002). In the Bayesian commu-
nity, model-based approaches are especially popular. To roughly
summarize the idea, we view each yi as generated from a distri-
bution K(· | θi), where (θ1, . . . , θn) are drawn from a discrete
distribution

∑K
k=1 wkδθ∗

k
(·), with wk as the probability weight,

and δθ∗
k

as a point mass at θ∗
k . With prior distributions, we could

estimate all the unknown parameters (θ∗
k ’s, wk’s, and K) from the

posterior.
The model-based clustering has two important advantages.

First, it allows important uncertainty quantification such as the
probability for cluster assignment ci, Pr(ci = k | yi), as a
probabilistic estimate that yi comes from the kth cluster (ci =
k ⇔ θi = θ∗

k ). Different from commonly seen asymptotic
results in statistical estimation, the clustering uncertainty does
not always vanish even as n → ∞. For example, in a two-
component Gaussian mixture model with equal covariance, for a
point yi at nearly equal distances to two cluster centers, we would
have both Pr(ci = 1 | yi) and Pr(ci = 2 | yi) close to 50%
even as n → ∞. For a recent discussion on this topic as well as
how to quantify the partition uncertainty, see Wade and Ghahra-
mani (2018) and the references within. Second, the model-based
clustering can be easily extended to handle more complicated
modeling tasks. Specifically, since there is a probabilistic process
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associated with the clustering, it is straightforward to modify it
to include useful dependency structures. We list a few examples
from a rich literature: Ng et al. (2006) used a mixture model
with random effects to cluster correlated gene-expression data,
Müller and Quintana (2010), Park and Dunson (2010), and Ren
et al. (2011) allowed the partition to vary according to some
covariates, Guha and Baladandayuthapani (2016) simultane-
ously clustered the predictors and use them in high-dimensional
regression.

On the other hand, model-based clustering has its lim-
itations. Primarily, one needs to carefully specify the den-
sity/mass function K, otherwise, it will lead to unwanted results
and difficult interpretation. For example, Coretto and Hen-
nig (2016) demonstrated the sensitivity of the Gaussian mix-
ture model to non-Gaussian contaminants, Miller and Dun-
son (2018) and Cai, Campbell, and Broderick (2021) showed
that when the distribution family of K is misspecified, the
number of clusters would be severely overestimated. It is nat-
ural to think of using more flexible parameterization for K,
in order to mitigate the risk of model misspecification. This
has motivated many interesting works, such as modeling K
via skewed distribution (Frühwirth-Schnatter and Pyne 2010;
Lee and McLachlan 2016), unimodal distribution (Rodríguez
and Walker 2014), copula (Kosmidis and Karlis 2016), mix-
ture of mixtures (Malsiner-Walli, Frühwirth-Schnatter, and
Grün 2017), among others. Nevertheless, as the flexibility of
K increases, the modeling and computational burdens also
increase dramatically.

© 2023 American Statistical Association
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In parallel to the above advancements in model-based clus-
tering, spectral clustering has become very popular in machine
learning and statistics. Von Luxburg (2007) provided a useful
tutorial on the algorithms and a review of recent works. On
clustering point estimation, spectral clustering has shown good
empirical performance for separating non-Gaussian and/or
manifold data, without the need to directly specify the distribu-
tion for each cluster. Instead, one calculates a matrix of similarity
scores between each pair of data, then uses a simple algorithm
to find a partition that approximately minimizes the total loss of
similarity scores across clusters (adjusted with respect to cluster
sizes). This point estimate is found to be not very sensitive to
the choice of similarity score, and empirical solutions have been
proposed for tuning the similarity and choosing the number
of clusters (Zelnik-Manor and Perona 2005; Shi, Belkin, and
Yu 2009). There is a rapidly growing literature of frequentist
methods on further improving the point estimate (Chi et al.
2007; Rohe, Chatterjee, and Yu 2011; Kumar, Rai, and Daume
2011; Lei and Rinaldo 2015; Han, Tong, and Fan 2021; Lei and
Lin 2022; among others), although, in this article, we focus on
the Bayesian perspective and aim to characterize the probability
distribution.

Due to the algorithmic nature, spectral clustering cannot be
directly used in model-based extension, or produce uncertainty
quantification. This has motivated a large Bayesian literature.
There have been several works trying to quantify the uncertainty
around the spectral clustering point estimate. For example, since
the spectral clustering algorithm can be used to estimate the
community memberships in a stochastic block model, one could
transform the data into a similarity matrix, then treat it as if
generated from a Bayesian stochastic block model (Snijders and
Nowicki 1997; Nowicki and Snijders 2001; McDaid et al. 2013;
Geng et al. 2019). Similarly, one could take the Laplacian matrix
(a transform of the similarity used in spectral clustering) or its
spectral decomposition, and model it in a probabilistic frame-
work (Socher, Maas, and Manning 2011; Duan, Michailidis, and
Ding 2023).

Broadly speaking, we can view these works as following
the recent trend of robust Bayesian methodology, in condi-
tioning the parameter of interest (clustering) on an insufficient
statistic (pairwise summary statistics) of the data. See Lewis,
MacEachern, and Lee (2021) for recent discussions. Pertain-
ing to Bayesian robust clustering, one gains model robustness
by avoiding putting any parametric assumption on within-
cluster distribution K(· | θ∗

k ); instead, one models the pair-
wise information that often has an arguably simple distribution.
Recent works include the distance-based Pólya urn process (Blei
and Frazier 2011; Socher, Maas, and Manning 2011), Dirich-
let process mixture model on Laplacian eigenmaps (Banerjee,
Akbani, and Baladandayuthapani 2015), Bayesian distance clus-
tering (Duan and Dunson 2021a), generalized Bayes exten-
sion of product partition model (Rigon, Herring, and Dunson
2023).

This article follows this trend. Instead of modeling yi’s as
conditionally independent (or jointly dependent) from a certain
within-cluster distribution K(· | θ∗

k ), we choose to model yi
as dependent on another point yj that is close by, provided
yi and yj are from the same cluster. This leads to a Markov
graphical model based on a spanning forest, a graph consisting

of multiple disjoint spanning trees (each tree as a connected
subgraph without cycles). The spanning forest itself is not new
to statistics. There has been a large literature on using spanning
trees and forests for graph estimation, such as Meila and Jordan
(2000), Meilă and Jaakkola (2006), Edwards, De Abreu, and
Labouriau (2010), Byrne and Dawid (2015), Duan and Dunson
(2021b), and Luo, Sang, and Mallick (2021). Nevertheless, a key
difference between graph estimation and graph-based clustering
is that—the former aims to recover both the node partition
and the edges characterizing dependencies, while the latter only
focuses on estimating the node partition alone (equivalent to
clustering). Therefore, a distinction of our study is that we
will treat the edges as a nuisance parameter/latent variable,
while we will characterize the node partition in the marginal
distribution.

Importantly, we formally show that by marginalizing the
randomness of edges, the point estimate on the node partition is
provably close to the one from the normalized spectral clustering
algorithm. As the result, the spanning forest model can serve as
the probabilistic model for the spectral clustering algorithm—
this relationship is analogous to the one between the Gaussian
mixture model and the K-means algorithm (MacQueen 1967).
Further, we show that treating the spanning forest as random,
as opposed to a fixed parameter (i.e., unknown), leads to much
less sensitivity in clustering performance, compared to cutting
the minimum spanning tree algorithm (Gower and Ross 1969).
On the distribution specification on the node and edges, we
take a Bayesian nonparametric approach by considering the
forest model as realized from a “forest process”—each cluster is
initiated with a point from a root distribution, then gradually
grown with new points from a leaf distribution. We charac-
terize the key differences in the partition distribution between
the forest and classic Pólya urn processes. This difference also
reveals that extra care should be exerted during model spec-
ification when using graphical models for clustering. Lastly,
by establishing the probabilistic model counterpart for spectral
clustering, we show how such models can be easily extended
to incorporate other dependency structures. We demonstrate
several extensions, including a multi-subject clustering of the
brain networks, and a high-dimensional clustering of photo
images.

2. Method

2.1. Background on Spectral Clustering Algorithms

We first provide a brief review of spectral clustering algorithms.
For data y1, . . . , yn, let Ai,j ≥ 0 be a similarity score between yi
and yj, and denote the degree Di,i = ∑

j �=i Ai,j. To partition the
data index (1, . . . , n) into K sets, V = (V1, . . . , VK), we want to
solve the following problem:

min
V

K∑
k=1

∑
i∈Vk,j �∈Vk

Ai,j∑
i∈Vk

Di,i
. (1)

This is known as the minimum normalized cut loss. The numer-
ator above represents the across-cluster similarity due to cutting
Vk off from the others; and the denominator prevents trivial
solutions of forming tiny clusters with small

∑
i∈Vk

Di,i.
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Figure 1. Three examples of clusters that can be represented by a spanning forest.

This optimization problem is a combinatorial problem,
hence, has motivated approximate solutions such as spectral
clustering. To start, using the Laplacian matrix L = D − A with
D the diagonal matrix of Di,i’s, and the normalized Laplacian
N = D−1/2LD−1/2, we can equivalently solve the above problem
via:

min
V

tr(Z′
VNZV ),

where ZV :i,k = 1(i ∈ Vk)
√

Di,i/
√∑

i∈Vk
Di,i. It is not hard to

verify that Z′
VZV = IK . We can obtain a relaxed minimizer of

Z : Z′Z = IK , by simply taking Ẑ as the bottom K eigenvectors
of N (with the minimum loss equal to the sum of the smallest K
eigenvalues). Afterward, we cluster the rows of Ẑ into K groups
(using algorithms such as the K-means), hence, producing an
approximate solution to (1).

To clarify, there is more than one version of the spectral clus-
tering algorithms. An alternative version to (1) is called “mini-
mum ratio cut,” which replaces the denominator

∑
i∈Vk

Di,i by
the size of cluster |Vk|. Similarly, continuous relaxation approx-
imation can be obtained by following the same procedures
above, except for clustering the eigenvectors of the unnormal-
ized L. Details on comparing those two versions can be found in
Von Luxburg (2007). In this article, we focus on the one based
on (1) and the normalized Laplacian matrix N. This version is
also commonly referred to as “normalized spectral clustering”.

2.2. Probabilistic Model via Bayesian Spanning Forest

The next question is if there is some partition-based generative
model for y, that has the maximum likelihood estimate (or, the
posterior mode in the Bayesian framework) almost the same as
the point estimate from the normalized spectral clustering.

We found an almost equivalence in the spanning forest
model. A spanning forest model is a special Bayesian network
that describes the conditional dependencies among y1, . . . , yn.
Given a partition V = (V1, . . . , VK) of the data index (1, . . . , n),
consider a forest graph FV = (T1, . . . , Tk), with each Tk =
(Vk, Ek) a component tree (a connected subgraph without
cycles), Vk the set of nodes and Ek the set of edges among Vk.
Using FV and a set of root nodes RV = (1∗, . . . , K∗) with
k∗ ∈ Vk, we can form a graphical model with a conditional
likelihood given the forest:

L(y;V ,FV ,RV , θ) =
K∏

k=1

[
r(yk∗ ; θ)

∏
(i,j)∈Tk

f (yi | yj; θ)

]
, (2)

where we refer to r(·; θ) as a “root” distribution, and f (· | yj; θ) as
a “leaf ” distribution; and we use θ to denote the other parameter;
and we use simplified notation (i, j) ∈ G to mean that (i, j) is an
edge of the graph G. Figure 1 illustrates the high flexibility of a
spanning forest in representing clusters. It shows the sampled F
based on three clustering benchmark datasets. Note that some
clusters are not elliptical or convex in shape. Rather, each cluster
can be imagined as if it were formed by connecting a point to
another nearby. In the supplementary materials S4.8, we show
two different realizations of spanning forest.

Remark 1. To clarify, the point estimation on a spanning forest
(as some fixed and unknown graph) has been studied (Gower
and Ross 1969). However, a distinction here is that we consider
V as the parameter of interest, but the edges and roots (FV ,RV )
as latent variables. The performance differences are shown in the
supplementary materials S4.6.

The stochastic view of (FV ,RV ) is important, as it allows us
to incorporate the uncertainty of edges and avoids the sensitivity
issue in the point graph estimate. Equivalently, our clustering
model is based on the marginal likelihood that varies with the
node partition V :

L(y;V , θ) =
∑

FV ,RV

L(y;V ,FV ,RV , θ)�(FV ,RV | V), (3)

where �(FV ,RV | V) is the latent variable distribution that we
will specify in the next section. We can quantify the marginal
connecting probability for each potential edge (i, j):

Mi,j := Pr[FV 
 (i, j)]
∝

∑
V

∑
FV ,RV

1[(i, j) ∈ FV ]L(y;V ,FV ,RV , θ)�(FV ,RV | V).

(4)
Similar to the normalized graph cut, there is no closed-form
solution for directly maximizing (3). However, closed-form does
exist for (4) (see Section 4). Therefore, an approximate max-
imizer of (3), V̂ , can be obtained via computing the matrix
M and searching for K diagonal blocks (after row and column
index permutation) that contain the highest total values of Mi,j’s.
Specifically, we can extract the top leading eigenvectors of M and
cluster the rows into K groups.

This approximate marginal likelihood maximizer produces
almost the same estimate as the normalized spectral clustering
does. This is because the two sets of eigenvectors are almost the
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Figure 2. Comparing the eigenvectors of a marginal connecting probability matrix M and the ones of normalized Laplacian N.

same. Further, it is important to clarify that such closeness does
not depend on how the data are really generated. Therefore, to
provide some numerical evidence, for simplicity, we generate yi
from a simple three-component Gaussian mixture in R

2 with
means in (0, 0), (2, 2), (4, 4) and all variances equal to I2. Figure 2
compares the eigenvectors of the matrix M and the normalized
Laplacian N (that uses f and r to specify A, with details provided
in Section 4). Clearly, these two are almost identical in values.
Due to this connection, the clustering estimates from spectral
clustering can be viewed as an approximate estimate for V̂
in (3).

We now fully specify the Bayesian forest model. For simplic-
ity, we now focus on continuous yi ∈ R

p. For ease of com-
putation, we recommend choosing f as a symmetric function
f (yi | yj; θ) = f (yj | yi; θ), so that the likelihood is invariant to
the direction of each edge; and choose r as a diffuse density, so
that the likelihood is less sensitive to the choice of a node as root.
In this article, we choose a Gaussian density for f and Cauchy
for r:

f (yi | yj; θ) = (2πσi,j)
−p/2 exp

{
−‖yi − yj‖2

2
2σi,j

}
,

r(yi; θ) = �[(1 + p)/2]
γ pπ(1+p)/2

1
(1 + ‖yi − μ‖2

2/γ
2)(1+p)/2 ,

(5)

where σij > 0 and γ > 0 are scale parameters. As the mag-
nitudes of distances between neighboring points may differ sig-
nificantly from cluster to cluster, we use a local parameterization
σi,j = σ̃iσ̃j, and will regularize (σ̃1, . . . , σ̃n) via a hyper-prior.

Remark 2. In (5), we effectively use Euclidean distances ‖yi −
yj‖2. We focus on Euclidean distance in the main text, for the
simplicity of presentation and to allow a complete specification
of priors. One can replace Euclidean distance with some others,
such as Mahalanobis distance and geodesic distance. We present
a case of high-dimensional clustering based on geodesic distance
on the unit-sphere in the supplementary materials S1.1.

2.3. Forest Process and Product Partition Prior

To simplify notations as well as to facilitate computation, we
now introduce an auxiliary node 0 that connects to all roots

(1∗, . . . , K∗). As the result, the model can be equivalently rep-
resented by a spanning tree rooted at 0:

T = (VT , ET ),
VT = {0} ∪ V1 ∪ · · · ∪ VK ,
ET = {(0, 1∗), . . . , (0, K∗)} ∪ E1 ∪ · · · ∪ EK .

In this section, we focus on the distribution specification for
T . The distribution, denoted by �(T ), �(T ) can be factorized
according to the following hierarchies: picking the number of
partitions K, partitioning the nodes into (V1, . . . , VK), forming
edges Ek and picking one root k∗ for each Vk. To be clear on the
nomenclature, we call �(FV ,RV | V) as the “latent variable
distribution,” �0(V) as the “partition prior.”

�(T ) =
{
�0(K)�0(V1, . . . , VK | K)︸ ︷︷ ︸

�0(V)

}

K∏
k=1

{
�(Ek | Vk)�(k∗ | Ek, Vk)

}
︸ ︷︷ ︸

�(FV ,RV |V)

.
(6)

Remark 3. In Bayesian nonparametric literature, �0(K)

�0(V1, . . . , VK | K) is known as the partition probability
function, which plays the key role in controlling cluster sizes
and cluster number in model-based clustering. However, when
it comes to graphical model-based clustering (such as our forest
model), it is important to note the difference—for each partition
Vk, there is an additional probability �(Ek, k∗ | Vk) due to the
multiplicity of all possible subgraphs formed between the nodes
in Vk.

For simplicity, we will use discrete uniform distribution for
�(Ek, k∗ | Vk). Since there are n(nk−2)+

k possible spanning trees
for nk nodes [(x)+ = x if x > 0, otherwise 0], and nk possible
choice of roots. We have �(Ek, k∗ | Vk) = n−(nk−1)

k .
We now discuss two different ways to complete the distri-

bution specification. We first take a “ground-up” approach by
viewing T as from a stochastic process where the node number
n could grow indefinitely. Starting from the first edge e1 = (0, 1),
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we sequentially draw new edges and add to T , from

ei | e1, . . . ei−1 ∼
i−1∑
j=1

π
[i]
j δ(j,i)(·) + π

[i]
i δ(0,i)(·),

yi | (j, i) ∼ 1(j ≥ 1)f (· | yj) + 1(j = 0)r(·),

(7)

with some probability vector (π
[i]
1 , . . . , π [i]

i ) that adds up to one.
We refer to (7) as a forest process. The forest process is a gen-
eralization of the Pólya urn process (Blackwell and MacQueen
1973). For the latter, ei = (j, i) would make node i take the same
value as node j, yi = yj [although in model-based clustering, one
would use notation θi = θj , and yi ∼ K(· | θi)]; ei = (0, i) would
make node i draw a new value for yi from the base distribution.
Due to this relationship, we can borrow popular parameteriza-
tion for π

[i]
j from the urn process literature. For example, we

can use the Chinese restaurant process parameterization π
[i]
j =

1/(i − 1 + α) for j = 1, . . . , (i − 1), and π
[i]
i = α/(i − 1 + α)

with some chosen α > 0. After marginalizing over the order of i
and partition index (see Miller 2019 for a simplified proof of the
partition function), we obtain:

�(T ) = αK�(α)

�(α + n)

K∏
k=1

�(nk)n−(nk−1)

k . (8)

Compared to the partition probability prior in the Chinese
restaurant process, we have an additional n−(nk−1)

k term that
corresponds to the conditional prior weight of for each possible
(k∗, Ek) given a partition Vk.

To help understand the effect of this additional term on
the posterior, we can imagine two extreme possibilities in the
conditional likelihood given a Vk. If the conditional L(yi : i ∈
Vk | k∗, Ek) is skewed toward one particular choice of tree
(k̂∗, Êk) [that is, L(yi : i ∈ Vk | k∗, Ek) is large when (k∗, Ek) =
(k̂∗, Êk), but is close to zero for other values of (k∗, Ek)], then
n−(nk−1)

k acts as a penalty for a lack of diversity in trees. On the
other hand, if L(yi : i ∈ Vk | k∗, Ek) is equal for all possible
(k∗, Ek)’s, then we can simply marginalize over (k∗, Ek) and be
not be subject to this penalty [since

∑
(k∗,Ek)

n−(nk−1)

k = 1].
Therefore, we can form an intuition by interpolating those

two extremes: if a set of data points (of size nk) are “well-knit”
such that they can be connected via many possible spanning
trees (each with a high conditional likelihood), then it would
have a higher posterior probability of being clustered together,
compared to some other points (of the same size nk) that have
only a few trees with high conditional likelihood.

With the “ground-up” construction useful for understanding
the difference from the classic urn process, the distribution (8)
itself is not very convenient for posterior computation. There-
fore, we also explore the alternative of a “top-down” approach.
This is based on directly assigning a product partition proba-
bility (Hartigan 1990; Barry and Hartigan 1993; Crowley 1997;
Quintana and Iglesias 2003) as

�0(V1, . . . , VK | K) =
∏K

k=1 n(nk−1)

k∑
all (V∗

1 ,...,V∗
K )

∏K
k=1 |V∗

k |(|V∗
k |−1)

,

(9)

where the cohesion function n(nk−1)

k effectively cancels out the
probability for each (k∗, Ek). To assign a prior for K, we assign a
probability

�0(K) ∝ λK
∑

all (V∗
1 ,...,V∗

K )

K∏
k=1

|V∗
k |(|V∗

k |−1),

supported on K ∈ {1, . . . , n} with λ > 0, with �(Ek, k∗ | Vk) =
n−(nk−1)

k , multiplying the terms according to (6) leads to

�(T ) ∝ λK , (10)

which is similar to a truncated geometric distribution and easy
to handle in posterior computation, and we will use this from
now on. In this article, we set λ = 0.5.

Remark 4. We now discuss the exchangeability of the sequence
of random variables generated from the above forest process.
The exchangeability is defined as the invariance of distribution
�(X1 = x1, . . . Xn = xn) = �(X1 = xπ̃1 , . . . Xn = xπ̃n) under
any permutation (π̃1, . . . , π̃n) (Diaconis 1977). For simplicity,
we focus on the joint distribution with θ as given, and hence
omit θ here. There are three categories of random variables
associated with each node i: the first drawn edge (j, i) that points
to a new node i (whose sequence forms T = (V , {Ek, k∗}K

k=1)),
the cluster assignment of a node ci (whose sequence forms V),
and the data point yi. It is not hard to see that, since each
component tree encodes an order among {i : ci = k}, the
joint distribution of the data and the forest �(y1, . . . , yn, T )

is not exchangeable. Nevertheless, as we marginalize out each
(Ek, k∗) to form the clustering likelihood L(y;V) in (3), and
all priors �0(V) presented in this section only depend on the
number and sizes of clusters, the joint distribution of the data
and cluster labels �{(y1, c1), . . . , (yn, cn)} = L(y;V)�0(V)

is exchangeable, with its form provided soon in (14). Lastly,
we see that �(y1, . . . , yn) is exchangeable after marginalizing
over V .

2.4. Hyper-Priors for the Other Parameters

We now specify the hyper-priors for the parameters in the root
and leaf densities. To avoid model sensitivities to scaling and
shifting of the data, we assume that the data have been appropri-
ately scaled and centered (e.g., via standardization), so that the
marginally Ey ≈ 0 and E‖y.,j − Ey.,j‖2

2 ≈ 1 for j = 1, . . . , p. To
make the root density r(·) close to a small constant in the support
of the data, we set μ = 0 and γ 2 ∼ Inverse-Gamma(2, 1).

For σi,j in the leaf density f (yi | yj; σi,j), in order to likely pick
an edge (i, j) with j as a close neighbors of i (that is, (i, j) with
small ‖yi − yj‖2), we want most of σi,j = σ̃iσ̃j to be small. We
use the following hierarchical inverse-gamma prior that shrinks
each σ̃i, while using a common scale hyper-parameter βσ to
borrow strengths among σ̃i’s,

βσ ∼ Exp(ησ ), ησ ∼ Inverse-Gamma(aσ , ξσ ),

σ̃i
iid∼ Inverse-Gamma(bσ , βσ ) for i = 1, . . . , n,

where ησ is the scale parameter for the exponential. To induce a
shrinkage effect a priori, we use aσ = 100 and ξσ = 1 for a likely
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small ησ hence a small βσ . Further, we note that the coefficient
of variation

√
var(σ̃i | βσ )/E(σ̃i | βσ ) = 1/

√
bσ − 2; therefore,

we set bσ = 10 to have most of σ̃i nearE(σ̃i | βσ ) = βσ /(bσ −1)

in the prior. We use these hyper-prior settings in all the examples
presented in this article.

In addition, Zelnik-Manor and Perona (2005) demonstrate
good empirical performance in spectral clustering via setting σ̃i
to a low order statistic of the distances to yi. We show a model-
based formalization with similar effects in the supplementary
materials S5.

2.5. Model-based Extensions

Compared to algorithms, a major advantage of probabilistic
models is the ease of building useful model-based extensions.
We demonstrate three directions for extending the Bayesian
forest model. Due to the page constraint, we defer the details
and numeric results of these extensions in the supplementary
materials S1.1, S1.2, and S1.3.
Latent Forest Model: First, one could use the realization of the
forest process as latent variables in another model M for data
(y1, . . . , yn),

z1, . . . , zn ∼ Forest Model(T ; θz),

y1, . . . , yn ∼ M(z1, . . . , zn; θy),

where θz and θy denote the other needed parameters. For exam-
ple, for clustering high-dimensional data such as images, it is
often necessary to represent each high-dimensional observation
yi by a low-dimensional coordinate zi (Wu, Feng, and Zhou
2014; Chandra, Canale, and Dunson 2023). In the supplemen-
tary materials, we present a high-dimensional clustering model,
using an autoregressive matrix Gaussian for M and a sparse von
Mises-Fisher for the forest model.
Informative Prior–Latent Variable Distribution: Second, in appli-
cations it is sometimes desirable to have the clustering depen-
dent on some external information x, such as covariates (Müller,
Quintana, and Rosner 2011) or an existing partition (Paganin
et al. 2021). From a Bayesian view, this can be achieved via taking
an x-informative distribution:

T ∼ �(· | x), y1, . . . , yn ∼ Forest Model(T ; θ).

In the supplementary materials, we illustrate an extension with
a covariate-dependent product partition model [PPMx, Müller,
Quintana, and Rosner (2011)] into the distribution of T .
Hierarchical Multi-view Clustering: Third, for multi-subject data
(y(s)

1 , . . . , y(s)
n ) for s = 1, . . . , S, we want to find a clustering for

every s. At the same time, we can borrow strength among sub-
jects, by letting subjects share some similar partition structure
on a subset of nodes (while differing on the other nodes). This is
known as multi-view clustering. On the other hand, a challenge
is that a forest is a discrete object subject to combinatorial
constraints, hence, it would be difficult to partition the nodes
freely while accommodating the tree structure. To circumvent
this issue, we propose a latent coordinate-based distribution that
gives a continuous representation for T (s). Consider a latent

z(s)
i ∈ R

d for each node i = 1, . . . , n, we assign a joint prior–
latent variable distribution for z(s) and T (s):

�[z(s), T (s)] ∝

λK[T (s)]
[ ∏

(i,j)∈T (s):i≥1,j≥1

exp(−‖z(s)
i − z(s)

j ‖2
2

2ρ
)

]
[ n∏

i=1

{ κ̃∑
k=1

vi,k exp(−‖z(s)
i − η∗

k‖2
2

2σ 2
z

)

}]
,

(vi,1, . . . , vi,κ̃ ) ∼ Dir(1/κ̃ , . . . , 1/κ̃) for i = 1, . . . n,

{y(s)
1 , . . . , y(s)

n } ∼ Forest Model(T (s)) for s = 1, . . . S,
(11)

where vi,1, . . . , vi,κ̃ are the weights that vary with i and∑κ̃
k=1 vi,k = 1, ρ > 0, and z(s) ∈ R

n×d is the matrix form.
Equivalently, the above assigns each node a location parame-
ter η

(s)
i , drawn from a hierarchical Dirichlet distribution with

shared atoms {η∗
1 , . . . , η∗

κ̃
} and probability (v.,1, . . . , , v.,κ̃ ) (Teh

et al. 2006). Further, one could let η∗
k vary over node according to

some functional using a hybrid Dirichlet distribution (Petrone,
Guindani, and Gelfand 2009).

Using a Gaussian mixture kernel on z(s)
i , we can now separate

z(s)
i ’s into several groups that are far apart. To make the param-

eters identifiable and have large separations between groups, we
fix η̃∗

k ’s on the d-dimensional integer lattice {0, 1, 2}d with d = 2
(hence, κ̃ = 9); and we use σ 2

z = 0.01 and ρ = 0.001 in this
article.

Remark 5. To clarify, our goal is to induce between-subject sim-
ilarity in the node partition, not the tree structure. For example,
for two subjects s and s′, when z(s)

i and z(s′)
i are both near η∗

k
for all i ∈ C, then both the spanning forest T (s) and T (s′) will
likely cluster the nodes in C together, even though T(s)

k and T(s′)
k

associated with Vk ⊃ C may be different.

3. Posterior Computation

3.1. Gibbs Sampling Algorithm

We now describe the Markov chain Monte Carlo (MCMC)
algorithm. For ease of notation, we use an (n+1)×(n+1) matrix
S, with Si,j = log f (yi | yj; θ), S0,i = Si,0 = log r(yi; θ)+log λ (for
convenience, we use 0 to index the last row/column), Si,i = 0,
and AT to represent the adjacency matrix of T . We have the
posterior distribution

�(T , θ | y) ∝ exp
{

tr[S(θ)AT ]/2
}
�0(θ). (12)

Note the above form conveniently include the prior term for
the number of clusters, λK , via the number of edges adjacent to
node 0.

Our MCMC algorithm alternates in updating T and θ , hence
is a Gibbs sampling algorithm. To sample T given θ , we take
the random-walk covering algorithm for weighted spanning
tree (Mosbah and Saheb 1999), as an extension of the Andrei–
Broder algorithm for sampling uniform spanning tree (Broder
1989; Aldous 1990). For this article to be self-contained, we
describe the algorithm below. The above algorithm produces a
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random sample T following the full conditional �(T | θ , y)
proportional to (12). It has an expected finish time of O(n log n).
Although some faster algorithms have been developed (Schild
2018), we choose to present the random-walk covering algo-
rithm for its simplicity.

Algorithm 1 Random-walk covering algorithm for sampling the
augmented tree T .

Start with VT = {0} and ET = ∅, and set i ← 0:
while |VT | �= n + 1 do

Take a random walk from i to j with probability Pr(j | i) =
exp[Si,j(θ)]∑

j:j �=i exp[Si,j(θ)] .
if j �∈ VT then

Add j to VT . Add (i, j) to ET .
Update i ← j.

We sample σ̃i using the following steps,

(ησ | .) ∼ Inverse-Gamma
(
1 + aσ , βσ + ξσ

)
(βσ | .) ∼ Gamma

{
1 + nbσ , (

n∑
i=1

1
σ̃i

+ 1
ησ

)−1
}

(σ̃i | .) ∼ Inverse-Gamma
[p

∑
j 1{(i, j) ∈ T }

2
+ bσ ,

∑
j:(i,j)∈T

‖yi − yj‖2
2

2σ̃j
+ βσ

]

To update γ , we use the form of the multivariate
Cauchy as a scale mixture of N(μ, γ 2uγ ,iIp) over uγ ,i ∼
Inverse-Gamma(1/2, 1/2). We can update via

uγ ,i ∼ Inverse-Gamma(
1 + p

2
,

1
2

+ ‖yi − μ‖2
2

2γ 2 ),

γ 2 ∼ Inverse-Gamma(2 + Kp
2

, σ̂ 2
y +

∑
i:(0,i)∈T

‖yi − μ‖2
2

2uγ ,i
).

We run the MCMC algorithm iteratively for many iterations.
And we discard the first half of iterations as burn-in.

Remark 6. We want to emphasize that the Andrei–Broder
random-walk covering algorithm (Broder 1989; Aldous 1990;
Mosbah and Saheb 1999) is an exact algorithm for sampling
a spanning tree T . That is, if θ were fixed, each run of this
algorithm would produce an independent Monte Carlo sample
T ∼ �(T | θ , y). Removing the auxiliary node 0 from T
will produce K disjoint spanning trees. This augmented graph
technique is inspired by Boykov, Veksler, and Zabih (2001).

In our algorithm, since the scale parameters in θ are
unknown, we use Markov chain Monte Carlo that updates two
sets of parameters, (i) (θ[t+1] | T[t]) and (ii) (T[t+1] | θ[t+1]) from
iteration [t] to [t + 1]. Therefore, rigorously speaking, there is a
Markov chain dependency between T[t] and T[t+1] induced by
θ[t+1]. Nevertheless, since we draw T in a block via the random-
walk covering algorithm, we empirically find that T[t+1] and
T[t] are substantially different. In the supplementary materials
S4.4, we quantify the iteration-to-iteration graph changes, and
provide diagnostics with multiple start points of (T[0], θ[0]).

3.2. Posterior Point Estimate on Clustering

In the field of Bayesian clustering, for producing point estimate
on the partition, it had been a long-time practice to simply track
pr(ci = k | y), then take the element-wise posterior mode
over k as the point estimate for ĉi. Nevertheless, this was shown
to be sub-optimal due to that: (i) label switching issue causes
unreliable estimates on pr(ci = k | y); (ii) the element-wise
mode can be unrepresentative of the center of distribution for
(c1, . . . , cn) (Wade and Ghahramani 2018). These weaknesses
have motivated new methods of obtaining point estimate of clus-
tering, that transform an n × n pairwise co-assignment matrix
{pr(ci = cj | y)}all (i,j) into an n × K assignment matrix (Medve-
dovic and Sivaganesan 2002; Rasmussen et al. 2008; Molitor et al.
2010; Wade and Ghahramani 2018). More broadly speaking,
minimizing a loss function based on the posterior sample (via
some estimator or algorithm) is common for producing a point
estimate under some decision theory criterion. For example, the
posterior mean comes as the minimizer of the squared error loss;
in Bayesian factor modeling, an orthogonal Procrustes-based
loss function is used for producing the posterior summary of the
loading matrix from the generated MCMC samples (Aßmann,
Boysen-Hogrefe, and Pape 2016).

We follow this strategy. There have been many algorithms
that one could use. For a recent survey, see Dahl, Johnson, and
Müller (2022). In this article, we use a simple solution of first
finding the mode of K from the posterior sample, then doing a
K̂-rank symmetric matrix factorization on {pr(ci = cj | y)}all(i,j)
and clustering into K̂ groups, provided by RcppML package
(DeBruine, Melcher, and Triche Jr 2021).

4. Theoretical Properties

4.1. Convergence of Eigenvectors

We now formalize the closeness of the eigenvectors of matrices
N and M (shown in Section 2.2), by establishing the convergence
of the two sets of eigenvectors as n increases.

To be specific, we focus on the normalized spectral clustering
algorithm using the similarity Ai,j = exp(Si,j), with Si,j =
log f (yi | yj; θ), S0,i = Si,0 = log r(yi; θ) + log λ. On the other
hand, for the specific form, f (yi | yj) can be any density satisfying
f (yi | yj, θ) = f (yj | yi, θ), r(yi; θ) can be any density satisfying
r(yi; θ) > 0. For the associated normalized Laplacian N, we
denote the first K bottom eigenvectors by φ1, . . . , φK , which
correspond to the smallest K eigenvalues.

Let M be the matrix with Mi,j = pr[T 
 (i, j) | y, θ ] for
i �= j and Mi,i = 0. The Kirchhoff ’s tree theorem (Chaiken and
Kleitman 1978) gives an enumeration of all T ∈ T,

∑
T ∈T

∏
(i,j)∈T

exp(Si,j) = (n + 1)−1
n+1∏
h=2

λ(h)(L) (13)

where L is the Laplacian matrix transform of the similarity
matrix A; λ(h) denotes the hth smallest eigenvalue. Differenti-
ating its logarithmic transform with respect to Si,j,

Mi,j = Pr[T 
 (i, j) | y]
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=
∑

T ∈T,(i,j)∈T
∏

(i′,j′)∈T exp(Si′,j′)∑
T ∈T

∏
(i′,j′)∈T exp(Si′,j′)

= ∂
∑n+1

i=2 log λ(i)(L)

∂Si,j
.

Let �1, . . . , �K be the top K eigenvectors of M, associated with
eigenvalues ξ1 ≥ ξ2 ≥ · · · ≥ ξK , and ξK > ξK+1 ≥
ξK+2 ≥ · · · ≥ ξn+1. And we can compare with the K leading
eigenvectors of (−N) ∈ R

n×n, φ1, . . . , φK . Using �1:K and φ1:K
to denote two (n + 1)× K matrices, we now show they are close
to each other.

Theorem 1. There exists an orthonormal matrix R ∈ R
K×K and

a finite constant ε > 0,

‖�1:K − φ1:KR‖F ≤ 40
√

K(n + 1)

ξK − ξK+1

max
i,j

{
(1 + ε)(D−1/2

i − D−1/2
j )2Ai,j

}
,

with probability at least 1 − exp(−n).

Remark 7. To make the right-hand side go to zero, a sufficient
condition is to have all Ai,j/Di,i = O(n−κ) with κ > 1/2.
We provide a detailed definition of the bound constant ε in the
supplementary materials S2.

To explain the intuition behind this theorem, our starting
point is the close relationship between Laplacian and spanning
tree models—multiplying both sides of (13) by (n + 1)−(n−1)

shows that the nonzero eigenvalue product of the graph Lapla-
cian L is proportional to the marginal probability of n data points
from a spanning forest-mixture model. Starting from this equal-
ity, we can write the marginal inclusion probability matrix of T
as a mildly perturbed form of the normalized Laplacian matrix.
Intuitively, when two matrices are close, their eigenvectors will
be close as well (Yu, Wang, and Samworth 2015).

Therefore, under mild conditions, as n → ∞, the two sets of
leading eigenvectors converge. In the supplementary materials
S4.7, we show that the convergence is very fast, with the two
sets of leading eigenvectors becoming almost indistinguishable
starting around n ≥ 50.

Besides the eigenvector convergence, we can examine the
marginal posterior �(V | θ , y), which is proportional to

L(y;V , θ)�0(V) = �0(K, V1, . . . , VK)

{ K∏
k=1

[
∑
i∈Vk

r(yi)]
}

K∏
k=1

{
n−1

k

nk∏
h=2

λ(h)(Lk)

}
,

(14)

where Lk is the unnormalized Laplacian matrix associated with
matrix {Ai,j}i∈Vk,j∈Vk . Imagine that if we put all indices in one
partition V1 = (1, . . . , n), then �(V | θ , y) would be very small
due to those close-to-zero eigenvalues. Applying this deduc-
tion recursively on subsets of data, it is not hard to see that
a high-valued �(V | θ , y) would correspond to a partition,
wherein each Vk has λ(h)(Lk) away from 0 for any h ≥ 2.

Further, since {n−1
k

∏nk
h=2 λ(h)(Lk)} = |Lk + J/n2

k|, a permuta-
tion in (1, . . . , n) corresponds to congruent and simultaneous
permutations of rows and columns of each Lk, which does not
change each determinant. Therefore, the joint distribution of
�{(y1, c1), . . . , (yn, cn)} is exchangeable.

4.2. Consistent Clustering of Separable Sets

We show that clustering consistency is possible, under some
separability assumptions when the data-generating distribution
follows a forest process. Specifically, we establish posterior ratio
consistency, as the ratio between the maximum posterior prob-
ability assigned to other possible clustering assignments to the
posterior probability assigned to the true clustering assignments
converges to zero almost surely under the true model (Cao,
Khare, and Ghosh 2019).

To formalize the above, we denote the true cluster label for
generating yi by c0

i (subject to label permutation among clusters),
and we define the enclosing region for all possible yi : c0

i = k as
R0

k for k = 1, . . . , K0 for some true finite K0. And we refer to
R0 = (R0

1, . . . , R0
K0

) as the “null partition”. By separability, we
mean the scenario that (R0

1, . . . , R0
K0

) are disjoint and there is a
lower-bounded distance between each pair of sets. As alterna-
tives, regions R = (R1, . . . , RK) could be induced by {c1, . . . , cn}
from the posterior estimate of T . For simplicity, we assume the
scale parameter in f is known and all equal σi,j = σ 0,n.
Number of clusters is known. We first start with a simple case
when we have fixed K = K0. For regularities, we consider data
as supported in a compact regionX , and satisfying the following
assumptions:

• (A1, diminishing scale) σ 0,n = C′(1/ log n)1+ι for some ι >

0 and C′ > 0.
• (A2, minimum separation) infx∈R0

k ,y∈R0
k′

‖x − y‖2 > Mn, for
all k �= k′ with some positive constant Mn > 0 such that
M2

n/σ
0,n = 8m̃0 log(n) for all (i, j) and is known for some

constant m̃0 > p/2 + 2.
• (A3, near-flatness of root density) For any n, ε1 < r(y) < ε2

for all y ∈ X .

Under the null partition, �(T |y) is maximized at T =
TMST,R0 , which contains K0 trees with each Tk being the mini-
mum spanning tree (denoted by subscript “MST”) within region
R0

k. Similarly, for any alternative R, �(T |y) is maximized at the
T = TMST,R.

Theorem 2. Under (A1,A2,A3), we have �(TMST,R|y)/
�(TMST,R0 |y) → 0 almost surely, unless R0

i ⊆ Rξ(i) for
some permutation map ξ(·).

Number of clusters is unknown: Next, we relax the condition by
having a K not necessarily equal to K0. We show the consistency
in two parts for 1)K < K0, and 2) K > K0 separately. In order
to show posterior ratio consistency in the second part, we need
some finer control on r(y):

• (A3’) The root density satisfies m̃1e−M/2σ 0,n ≤ r(y) ≤
m̃2e−M/2σ 0,n for some m̃1 < m̃2.
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Figure 3. Uncertainty quantification in clustering data generated near three manifolds. When data are close to the manifolds (Panels (a) and (e)), there is very little
uncertainty on clustering in low Pr(ci = cj | j) between points from different clusters (Panels (b) and (f )). As data deviate more from the manifolds (Panel (c) and (g)),
the uncertainty increases (Panels (d) and (h)). And in Panel (g), the point estimate shows a two-cluster partitioning, while there is about 20% of probability for three-cluster
partitioning.

In this assumption, we essentially assume the root distribution
to be flatter with a larger n. Then we have the following results.

Theorem 3. 1) If K < K0, under the assumptions (A1,A2,A3),
we have
�(TMST,R|y)/�(TMST,R0 |y) → 0 almost surely.

2) If K > K0, under the assumptions (A1,A2,A3’), we have
�(TMST,R|y)/�(TMST,R0 |y) → 0 almost surely.

The above results show posterior ratio consistency. Further-
more, when the true of clusters is known, the ratio consistency
result can be further extended to show clustering consistency,
which is proved in the supplementary materials S3.

5. Numerical Experiments

To illustrate the capability of uncertainty quantification, we carry
out clustering tasks on those near-manifold data commonly used
for benchmarking clustering algorithms. In the first simulation,
we start with 300 points drawn from three rings of radii 0.2,
1 and 2, with 100 points from each ring. Then we add some

Gaussian noise to each point to create a coordinate near a ring
manifold. We present two experiments, one with noises from
N(0, 0.052I2), and one with noises N(0, 0.12I2). As shown in
Figure 3, when these data are well separated (Panel (a), show-
ing posterior point estimate), there is very little uncertainty
on the clustering (Panel (b)), with the posterior co-assignment
Pr(ci = cj | y) close to zero for any two data points near
different rings. As noises increase, these data become more
difficult to separate. There is a considerable amount of uncer-
tainty for those red and blue points: these two sets of points are
assigned into one cluster with a probability close to 40% (Panel
(d)). We conduct another simulation based on an arc manifold
and two point clouds (Panels (e)–(h)), and find similar results.
Additional experiments are described in the supplementary
materials S4.2.

In the supplementary materials S4.1 and S4.3, we present
some uncertainty quantification results, for clustering data that
are from mixture models. We compare the estimates with the
ones from Gaussian mixture models, which could correspond to
correctly/erroneously specified component distribution. Empir-
ically, we find that the uncertainty estimates on Pr(ci = cj | y)
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Figure 4. Results of brain region clustering (lateral view) for four subjects taken from the healthy and diseased groups. The multi-view clustering model allows subjects to
have similar partition structures on a subset of nodes, while having subtle differences on the others (Panels (a) and (b), Panels (c) and (d)). At the same time, the healthy
subjects show less degree of variability in the brain clustering than the diseased subjects.

and Pr(K | y) from the forest model are close to the ones based
on the true data-generating distribution; whereas the Gaussian
mixture models suffer from sensitivity in model specification,
especially when K is not known.

6. Application: Clustering in Multi-subject Functional
Magnetic Resonance Imaging Data

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clin-
ical and neuropsychological assessment can be combined to
predict the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). In this application, we conduct a
neuroscience study for finding connected brain regions under a
varying degree of impact from Alzheimer’s disease. The source
dataset is resting-state functional magnetic resonance imaging
(rs-fMRI) scan data, collected from S = 166 subjects at differ-
ent stages of Alzheimer’s disease. Each subject has scans over
n = 116 regions of interest using the Automated Anatomical
Labeling (AAL) atlas (Rolls et al. 2020; Shi et al. 2021) and over
p = 120 time points. We denote the observation for the sth
subject in the ith region by y(s)

i ∈ R
p.

The rs-fMRI data are known for their high variability, often
characterized by a low intraclass correlation coefficient (ICC),
(1 − σ̂ 2

within–group/σ̂
2
total), as the estimate for the proportion

of total variance that can be attributed to variability between
groups (Noble, Scheinost, and Constable 2021). Therefore, our
goal is to use the multi-view clustering to divide the regions of
interest for each subject, while improving our understanding of
the source of high variability.

We fit the multi-view clustering model to the data, by run-
ning MCMC for 5000 iterations and discarding the first 2500
as burn-in. As shown in Figure 4, the hierarchical Dirichlet
distribution on the latent coordinates induces similarity between
the clustering of brain regions among subjects on a subset of
nodes, while showing subtle differences on the other nodes.

On the other hand, some major differences can be seen in the
clusterings between the healthy and diseased subjects. Using
the latent coordinates (at the posterior mean), we quantify the
distances between z(s) and z(s′) for each pair of subjects s �= s′.
As shown in Figure 5(a), there is a clear two-group structure
in the pairwise distance matrix formed by ‖z(s) − z(s′)‖F , and
the separation corresponds to the first 64 subjects being healthy
(denoted by s ∈ g1) and the latter 102 being diseased (denoted
by s ∈ g2).

Next, we compute the within-group variances for these two
groups, using

∑
s∈gl

‖z(s)
i − (

∑
s∈gl

z(s)
i /|gl|)‖2

F/|gl| for l = 1
and 2, and plot the variance over each region of interest i on
the spatial coordinate of the atlas. Figure 5(b) and (c) show
that, although both groups show some degree of variability,
the diseased group shows clearly higher variances in some
regions of the brain. Specifically, the paracentral lobule (PCL)
and superior parietal gyrus (SPG), dorsolateral superior frontal
gyrus (SFGdor), and supplementary motor area (SMA) in the
frontal lobe show the highest amount of variability. Indeed, those
regions are also associated with very low ICC scores [Figure 5(e)]
calculated based on the variance of z(s)

i , with pooled estimates
σ̂ 2

total,i = ∑
s ‖z(s)

i − (
∑

s z(s)
i /S)‖2

F/S and σ̂ 2
within–group,i =∑2

l=1
∑

s∈gl
‖z(s)

i − (
∑

s∈gl
z(s)

i /|gl|)‖2
F/S. On the other hand,

some regions such as the hippocampus (HIP), parahippocampal
gyrus (PHG), and superior occipital gyrus (SOG) show relatively
lower variances within each group, hence, higher ICC scores.

To show more details on the heterogeneity, we plot the
latent coordinates associated with those ROIs using boxplots.
Since each z(s)

i is in two-dimensional space, we plot the linear
transform z̃(s)

i = z(s)
i,1 + z(s)

i,2 . Interestingly, those 8 ROIs with
high variability still seem quite informative for distinguishing
the two groups (Figure 5(f)). To verify, we concatenate those
latent coordinates and form an S × 16 matrix, and fit them in
a logistic regression model for classifying the healthy versus dis-
eased states. The Area Under the Curve (AUC) of the Receiver
Operating Characteristic is 86.6%. On the other hand, when we
fit the 6 ROIs with low variability in logistic regression, the AUC
increases to 96.1%.

An explanation for the above results is that Alzheimer’s dis-
ease does different degrees of damage in the frontal and parietal
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Figure 5. Using the latent coordinates to characterize the heterogeneity within the subjects.

lobes (see the two distinct clusterings in Figure 4(c) and (d)),
and the severity of the damage can vary from person to person.
On the other hand, the hippocampus region (HIP and PHG),
important for memory consolidation, is known to be commonly
affected by Alzheimer’s disease (Braak and Braak 1991; Klimova
et al. 2015), which explains the low heterogeneity in the diseased

group. Further, to our best knowledge, the high discriminability
of the superior occipital gyrus (SOG) is a new quantitative
finding, that could be meaningful for a further clinical study.

For validation, without using any group information, we
concatenate those z(s)

i ’s over all i = 1, . . . , 116 and form an
S×232 matrix and use lasso logistic regression to classify the two
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groups. When 12 predictors are selected (as a similar-size model
to the one above using six ROIs), the AUC is 96.4%. Since z(s)

i ’s
are obtained in an unsupervised way, this validation result shows
that the multi-view clustering model produces meaningful rep-
resentation for the nodes in this Alzheimer’s disease data. We
provide further details on the clusterings, including the number
of clusters, and the posterior co-assignment probability matrices
in the supplementary materials S4.5.

7. Discussion

In this article, we present our discovery of a probabilistic model
for popular spectral clustering algorithms. This enables straight-
forward uncertainty quantification and model-based extensions
through the Bayesian framework. There are several directions
worth exploring. First, our consistency theory is conducted
under the condition of separable sets, similar to Ascolani
et al. (2022). For general cases with non-separable sets, clus-
tering consistency (especially on estimating K) is challenging
to achieve; to our best knowledge, existing consistency theory
only applies to data generated independently from a mixture
model (Miller and Harrison 2018; Zeng, Miller, and Duan 2023).
For data generated dependently via a graph, this is still an
unsolved problem. Second, in all of our forest models, we have
been careful in choosing densities with tractable normalizing
constants. One could relax this constraint by using densities
f (yi | yj, θ) = αf gf (yi | yj; θ) and r(yi; θ) = αrgr(yi; θ), with
g some similarity function, and (αf , αr) potentially intractable.
In these cases, the forest posterior becomes �(T | .) ∝
(λαr/αf )

K ∏
(0,i)∈T gr(yi; θ)

∏
(i,j)∈T gr(yi | yj; θ). Therefore,

one could choose an appropriate λ̃ = λαr/αf (equivalent to
choosing some value of λ), without knowing the value of αf or
αr ; nevertheless, how to calibrate λ̃ still requires further study.
Third, a related idea is the Dirichlet Diffusion Tree (Neal 2003),
which considers a particle starting at the origin, following the
path of previous particles, and diverging at a random time. The
data are collected as the locations of particles at the end of a
time period. Compared to the forest process, the diffusion tree
process has the conditional likelihood given the tree invariant
to the ordering of the data index, which is a stronger property
compared to the marginal exchangeability of the data points.
Therefore, it is interesting to further explore the relationship
between those two processes.

Supplementary Materials

The supplementary materials include additional details on the model-based
extensions, proofs of theorems, numerical experiments and a link to the R
source code.
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